
An Applications Approach to Evolvable Hardware

Reid Porter and Kevin McCabe
Los Alamos National Laboratory,

Space and Remote Sensing,
Los Alamos, New Mexico USA 87545.

rporter, kmccabe@lanl.gov

Neil Bergmann
Cooperative Research Centre for Satellite Systems ,

Queensland University of Technology,
Brisbane Australia 40001.

n.bergman@qut.edu.au

Abstract

We discuss the use of Field Programmable Gate Arrays
(FPGAs) as hardware accelerators in genetic algorithm
(GA) applications. The research is particularly focused on
image processing optimization problems where fitness eval-
uation is computationally demanding and poorly suited to
micro-processor systems. This research identifies key de-
sign principles for FPGA based GA and suggests a novel 2
stage reconfiguration technique. We demonstrate its effec-
tiveness in obtaining significant speed-up; and illustrate the
unique hardware GA design environment where representa-
tion is driven by a combination of hardware architecture
and problem domain.

1. Introduction

Evolvable hardware attempts to apply evolutionary prin-
ciples to the design of electronic circuits. We are also in-
terested in using genetic algorithms to find suitable hard-
ware circuits for particular applications but are motivated
by the long execution times of software GA experiments.
GAs are an effective optimization procedure which use a
large number of candidate solutions (population) to con-
verge over time to a global optimum [2]. Maintaining such
a population leads to robust solutions in many problem do-
mains but also leads to large computation times. This is
particularly true when GAs are applied to image processing
problems which are generally poorly suited to traditional
sequential processors. Hardware acceleration of GAs is a
difficult problem due to the application specific nature of
representation, and fitness evaluation. FPGAs are a flexible
implementation alternative that can provide the application
specific architecture necessary for GA speed-up while still
maintaining software flexibility.

We suggest FPGA based GA-accelerators using a novel
2-stage reconfiguration technique. A GA-accelerator needs
to be configurable for (1) different problems and (2) dif-

ferent candidate solutions (also referred to as individuals)
of the population for each problem. For each problem the
FPGA is configured once at the start of a GA run using the
FPGA programming bit-stream. This method is too slow
to configure each individual of the GA population and so
we introduce a second level of configurability using con-
trol lines to dictate arrangement of a fixed set of operators
specific to that problem.

Section 2 introduces the two stage reconfiguration tech-
nique and associated terminology. The first and second lev-
els of configurability are described in more detail in Sec-
tions 3 and 4 respectively. Section 5 describes the applica-
tion of the technique to a multi-spectral feature identifica-
tion problem and provides results from initial experiments.

The key to efficient implementation of the 2-stage recon-
figuration technique is in the reuse of hardware resources
from one individual to the next. This maximizes the amount
of FPGA area being used at any one time leading to in-
creased performance. We describe three levels of hard-
ware reuse in this paper: gate level reuse is the most com-
monly used method in evolvable hardware systems and is
described in Section 3, arithmetic level reuse is described
in Section 4 and application specific operator level reuse in
Section 5.1.

2. The GA Isostructure

Usually the most computationally intensive part of a GA
is the fitness evaluation. This involves evaluating how well
each individual in a GA population solves the particular
problem. When GAs are applied to image processing prob-
lems this can involve several data intensive image process-
ing operations for each individual. If each individual can be
implemented in hardware, this fitness evaluation can be car-
ried out at high speed, reducing GA run times considerably
[5]. A problem with high density FPGAs is that reconfig-
uration time can often become large compared to the time
required for fitness evaluation. To avoid this problem we
suggest that two levels of configuration are required.



Figure 1. Two stage reconfiguration

In most GA experiments, individuals have similar imple-
mentation requirements. A key to efficient implementation
is to localize where GA individuals differ so that reconfig-
uration time can be minimized. We present Figure 1 and
the following terminology for clarity. The GA isostructure
is implemented with the first level of configurability, the
FPGA programming bit-stream, and is common to all indi-
viduals in a GA run. The GA isostructure requires structure
to obtain significant speed-up, and also flexibility to imple-
ment all GA individuals of interest. The second level of
configurability is then used to rapidly fine tune the isostruc-
ture, by setting control lines, to implement particular GA in-
dividuals. The result of this two stage configuration process
is a hardware implementation of a particular GA individual
where fitness evaluation can be carried out at high speed.

The choice of isostructure is an important one and is dic-
tated by a combination of application domain and hardware
resources. It leads to unique hardware search spaces that
will have direct effect upon the evolvability of the system.
This will be discussed further in Section 5.2.

3. The First Level of Configurability

With rapidly reconfigurable FPGAs such as the Xilinx
XC6000 series devices only the first level of configurability
is required. FPGA programming is generally still a two step
process. (1) An isostructure is first implemented at the start
of the GA run and (2) particular GA individuals are then
configured as required using partial reconfiguration. Since
the GA is operating on the programming bit-stream directly,
the functionality and connectivity of each FPGA logic cell
can vary from one GA individual to the next. We consider
this as hardware reuse at the gate level.

We investigated this feature by evolving cellular au-
tomata (CA) rule tables to perform basic pattern recogni-
tion. Papers by Mitchell [8] and Sahota [10] describe sim-
ilar experiments performed in software. Our experiment,
described in detail in [9], implemented 5 variable, 2 state

CA on a XC6000 series FPGA using combinatorial logic
trees. The logic tree isostructure is illustrated in Figure 2
and is configured by selecting inputs to the logic gates and
multiplexers as well as choosing suitable functions for the
logic gates. This isostructure made a high speed implemen-
tation possible while still providing flexibility to implement
all GA individuals of interest, in this case a 5 variable CA
rule table.

Figure 2. Logic Tree Isostructure

Representation based on the logic tree isostructure was
compared against a software based CA rule table GA. It
was found that the logic tree isostructure could implement
problem specific constraints more easily than CA rule table
representations leading to improved performance. Evaluat-
ing the fitness of the hardware individual was 38 times faster
than software fitness evaluation.

4. A Second Level of Configurability

FPGA manufacturers have moved away from rapidly re-
configurable architectures in favor of high density devices.
Such devices suffer from long reconfiguration times and
therefore the second level of configurability is required. The
FPGA bit-steam is suitable for configuring the GA isostruc-
ture since this is necessary only at the start of a GA run. The
second level of configurability must be incorporated into



the GA isostructure directly using multiplexers and control
lines. Hardware reuse is an important design consideration
at this stage since incorporating the control lines can quickly
dominate hardware resources. Most applications do not re-
quire the fine grain flexibility of gate level configurability
and therefore we adopt a problem orientated approach to
hardware reuse.

Generalized pipelined arrays, suggested by Kamal in [4]
are an excellent example of how the second level of con-
figurability can be implemented. These arrays can be con-
figured by setting control lines to perform a number of
common operations such as multiplication, division, square
root, and squaring. These operations have very similar
hardware requirements and therefore can be combined with
large area cost savings. An arithmetic array was imple-
mented on Altera Flex10K devices and details are summa-
rized in Table 1. Through intelligent reuse of hardware

Operator � � p ��p

Estimated Area
Cost (Logic Cells)

206 286 305 429

Resource Gain 1.98

Table 1. Area Cost Estimates

the computational resources available to the GA is effec-
tively doubled. We consider this as hardware reuse at the
arithmetic level and suggest such arrays as useful building
blocks for many GA applications.

5. Application to Multi-Spectral Feature Iden-
tification

Multi-spectral image processing is a data intensive and
time consuming process traditionally employing groups of
analysts to manually identify regions of interest within a
particular data set. Automatic feature identification algo-
rithms have been developed but are often application and
data set specific and lack generality to be applied to the
wide range of problems analysts may encounter. We at-
tempt to use GAs to automatically generate and fine tune
feature identification algorithms for particular applications
or data sets that have not yet been considered. We are par-
ticularly interested in area-based features that are used in
terrain classification and land use characterization.

Our approach is closely related to Genetic Programming
methodologies where a number of image processing oper-
ators are combined with the multi-spectral input channels
to produce executable algorithms. The choice of operators
is an important one and is dictated largely by hand crafted
classification algorithms developed in the remote sensing
community.

5.1. Hardware Reuse at the Operator Level

Operators are grouped according to their hardware re-
quirements and are summarized in Table 2.

Type Examples

Spectral NDVI, Linear Scale,
Linear Combination

Spatial Mean, Standard Deviation,
Convolution, Rank Order

Threshold
Clipping, Boolean,
Band Pass

Table 2. Types of Operators

Spectral operators are used extensively in the remote
sensing community and are applied on a pixel by pixel ba-
sis to one or more input channels. Their data requirements
suggest a pipelined architecture and we therefore use Ka-
mal’s generalized arithmetic pipeline as a starting point. A
powerful measure of land type in remote sensing is the Nor-
malized Differential Vegetation Index (NDVI) calculated
as: NDV I = A�B

A+B
where A and B represent two multi-

spectral input channels [6]. We use this problem specific
knowledge to define the configurable spectral operator ar-
chitecture of Figure 3.

Figure 3. Programmable Spectral Operator

With the increasing spatial resolution of multi-spectral



sensors, texture information becomes increasingly useful
[3]. Spatial operators are applied to a local neighborhood
of pixels taken from a single input channel. The predomi-
nate hardware cost for spatial operators in a pipelined archi-
tecture is accessing the local neighborhood and this can be
shared between different operators. Thresholding operators
also have very similar hardware requirements and can share
resources easily. By combining operators into larger, pro-
grammable macro operators we can employ hardware reuse
at the operator level.

5.2. Choice of Isostructure

A GA individual will contain a number of operators in
a specific order. One individual may use a spectral opera-
tor followed by a spatial operator, while another will use a
spatial operator followed by a spectral operator. In software
the GA can be used to find the optimum order of operators.
In hardware some structure must be imposed on the search
space in order to make implementation possible. The effect
of GA isostructure on evolvability is not clear and knowl-
edge of the problem domain plays an important role. Miller
in [7] discusses similar issues of evolvability in evolving
2-bit binary multipliers. Adaptive representation schemes
have been suggested [1], which may be applicable to this
problem. Since isostructural optimisation would only need
to be performed once at the design stage, efficiency gains
may be possible if the problem domain has general struc-
tural properties.

5.3. Summary of Initial Experiments

The isostructure used in our initial experiments is illus-
trated in Figure 4. The GA selects the input channels to the
top level spectral and spatial operators, as well as the pre-
cise functionality of the 5 image operators. Figure 5 is an
example of the training data used showing a visible band
of the multi-spectral input (top) and desired output image
(bottom). The required area feature, in this case a type of
vegetation, was identified by hand and used as binary truth.

Experiments used a population of 100 and ran for 30 gen-
erations using an elitest strategy similar to that used in [8].
Crossover and mutation were constrained to maintain the
GA isostructure. We compared the performance over 30
runs of the structured GA to a software version where oper-
ator order was not specified. Both types of GA performed
equally well with an isostructural individual achieving the
highest overall accuracy of 95.7%.

There was not enough statistical difference in the results
to discern the better GA strategy, but we are encouraged by
the similar performance and conclude the GA isostructure
has the necessary flexibility to implement most individu-
als of interest. Further investigations are required including

Figure 4. GA isostructure

Figure 5. Example training images



Operator #Logic Cells (12160 Total) % of FPGA
Spectral 650 * 2 11
Spatial 1230 * 2 20
Threshold 125 1
Total 3885 32
On Chip Memory 8Kbits out of 40Kbits 20

Table 3. Area Cost Estimates

variation of the GA isostructure. We believe an isostructural
GA is possible that will include all GA individuals of inter-
est and may even out-perform unconstrained GA runs due
to the reduced search space.

We have estimated the FPGA area requirements for the
GA isostructure of Figure 4 which are summarized in Ta-
ble 3. The design is targeted at an Altera Flex10K250
device and will be implemented in the near future. The
isostructure uses one third of the FPGA resources indicat-
ing more complicated structures are possible. Future ex-
periments will look at making use of these resources as
we learn more about the problem with new operators, ad-
vanced classification techniques and intelligent fitness case
selection. The target clock speed of the GA isostructure is
40Mhz which achieves a speed-up of 50-100 times an opti-
mized Pentium-II, 450 MHz implementation.

6. Conclusion

Some key concepts in the implementation of FPGA
based GA-accelerators have been identified. These include
a two stage approach to reconfiguration made necessary by
long reconfiguration times of high density FPGA devices.
The first level of configurability, the FPGA bit-stream, is
used to implement a structure common to all GA individ-
uals at the start of a GA run. This structure is referred to
as the GA isostructure and is fine tuned with the second
level of configurability to implement all GA individuals of
interest. This second level of configurability must be incor-
porated into the GA isostructure directly by using control
lines and multiplexers.

We identified the importance of hardware reuse in imple-
menting the second level of configurability and suggested a
problem orientated approach. Reuse at several levels was
discussed and arithmetic building blocks suggested. We
discussed the importance of GA isostructure, dictated by
a combination of problem domain and hardware resources,
on evolvability and described initial experiments in multi-
spectral feature identification.

References

[1] L. Altenberg. Evolving better representations through selec-
tive genome growth.Proceedings 1st I.E.E.E. Conference
on Evolutionary Computation, June 1994.

[2] D. Golberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989.

[3] R. Haralick and K. Shanmugam. Combined spectral and
spatial processing of erts imagery data.Remote Sensing of
Environment, 3:3–13, 1974.

[4] A. K. Kamal, H. Singh, and D. Agrawal. A generalized
pipeline array. I.E.E.E. Transactions on Computers, C-
23:533–536, May 1974.

[5] J. R. Koza et. al. Rapid reconfigurable field-programmable
gate arrays for accelerating fitness evaluation in genetic pro-
gramming. Late Breaking Papers at the Genetic Program-
ming 1997 Conference, pages 121–131, 1997.

[6] C. Leprieur, M. Verstraete, and B. Pinty. Evaluation of the
performance of various vergetation indices to retrieve veg-
etation cover from avhrr data.Remote Sensing Reviews,
10:265–284, 1994.

[7] J. Miller and P. Thomsom. Aspects of digital evolution:
Evolvability and architecture.Parallel Problem Solving from
Nature - PPSN V. 5th International Conference, September
1998.

[8] M. Mitchell, J. P. Crutchfield, and R. Das. Evolving cel-
lular automata with genetic algorithms: A review of recent
work. First International Conference on Evolutionary Com-
putation and Its Applications (EvCA’96), 1996.

[9] R. Porter and N. Bergmann. Evolving fpga based cellular
automata. SEAL’98 : Simulated Evolution and Learning,
October 1998.

[10] P. Sahota, M. F. Daemi, and D. G. Elliman. Training ge-
netically evolving cellular automata for image processing.
International Symposium on Speech, Image Processing and
Neural Networks, April, 1994.


